FIRST CHARACTERIZATION OF THE MICROBIOME OF THE JOINTED PUMPKIN FLY, *DACUS VERTEBRATUS* BEZZI (DIPTERA: TEPHRITIDAE)

<u>Jenipher Tairo</u>¹, Wouter Hendrycks², Nele Mullens², Mwajuma Zinga¹, Ramadhani Majubwa¹, Abdul Kudra¹, Marc De Meyer², Maulid Mwatawala¹, and Massimiliano Virgilio² ¹Department of Crop Science and Horticulture, Sokoine University of Agriculture, Tanzania ²Biology Department, Royal Museum for Central Africa, Tervuren, Belgium

Introduction

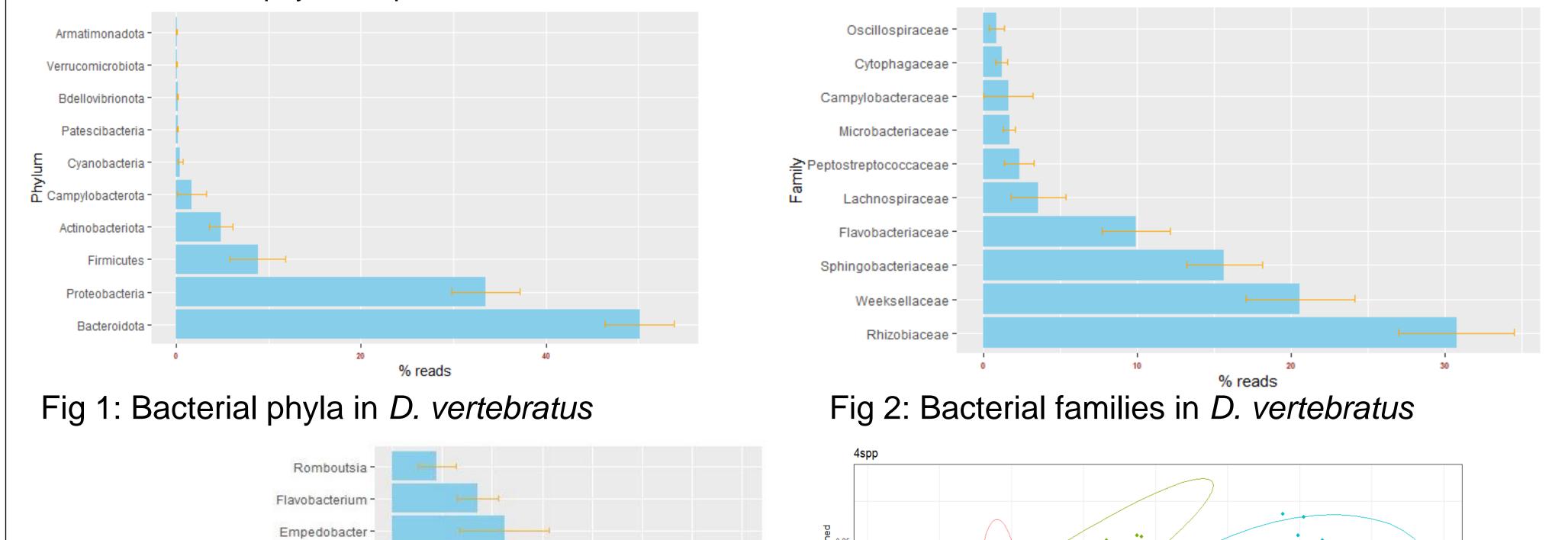
The Jointed Pumpkin Fly, *Dacus Vertebratus* is among the economically important pests of horticultural crops in Africa. The pest attacks mainly cucurbits causing 25% to 100% losses. While its impact on agriculture is well documented, little is known about the microbial communities associated with this pest. This study presents the first characterization of the gut microbiome of *D. vertebratus*.

Methodology

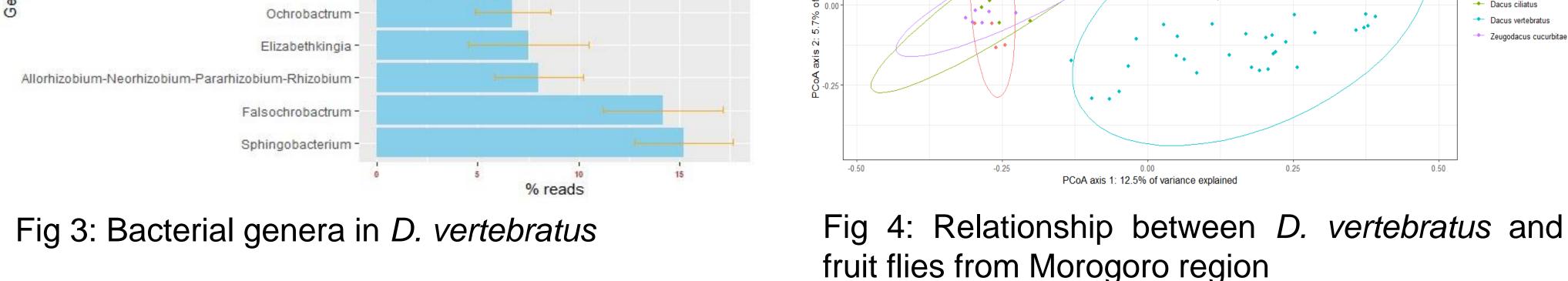
Sites were established at Sokoine University of Agriculture (SUA) in Morogoro Tanzania. Third instar larvae were collected from infested watermelon (*Citrullus lanatus*) at two different sites and across four plots subject to agroecological or conventional pest management. A subset of 43 samples of *D. vertebratus* was subjected to 16S rRNA metabarcoding. We also considered an extended set of samples including cucurbit-feeding fruit flies from the Morogoro area.

Agroecological farm at SUA and laboratory experiments at RMCA

species


Dacus bivittatus

AF


R

Results and Discussion

The analysis of the microbial communities of larvae of *D. vertebratus* produced 2,552 filtered ASVs assigned to 22 phyla, 212 families, and 465 genera of bacteria. More than 99.8% of ASVs belonged to 10 phyla (Figure 1). On the other hand, the 10 most abundant bacterial families (Figure 2) contributed to 88.4% of the ASVs, while more than 75.4% of the ASV belonged to 10 genera (Figure 3). When *D. vertebratus* was compared with samples of other tephritids feeding on watermelon collected in the Morogoro area, it was found that it significantly differed from *D. bivittatus*, *D. ciliatus*, and *Z. cucurbitae*) (Figure 4). The results align with other studies that reported Proteobacteria, Bacteroidota, and Firmicutes as the most dominant phyla in tephritidae.

snus

Conclusion

This study marks the initial step to more studies on *D. vertebratus* microbial communities. These data will contribute to a better understanding of the drivers of microbial diversity in cucurbit-feeding Tephritidae and, in the longer term, the development of microbial approaches to insect pest management.

Myroides

Chryseobacterium

Agroecological methodology for VEGetable crops (AGROVEG) project

